
NeuroImage 202 (2019) 116107
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Current progress in real-time functional magnetic resonance-based
neurofeedback: Methodological challenges and achievements

Christian Paret a,b,g,**, Noam Goldway b,c, Catharina Zich d,e, Jackob Nimrod Keynan b,g,
Talma Hendler b,c,g, David Linden h,i, Kathrin Cohen Kadosh d,f,*

a Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, Germany
b Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Centre, Tel-Aviv, Israel
c Sagol School of Neuroscience Tel Aviv University, Israel
d Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
e Department of Psychology, University of Oldenburg, 26111, Oldenburg, Germany
f School of Psychology, University of Surrey, Guildford, GU2 7XH, UK
g School of Psychological Science and Faculty of Medicine, Tel Aviv University, Israel
h MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff,
CF24 4HQ, UK
i School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229, ER Maastricht, the
Netherlands
A R T I C L E I N F O

Keywords:
BCI
Developmental cognitive neuroscience
Multivariate pattern analysis
Real-time fMRI
Neurofeedback
Translational research
Review
* Corresponding author. School of Psychology, U
** Corresponding author. Central Institute of Men

E-mail addresses: christian.paret@zi-mannheim.d

https://doi.org/10.1016/j.neuroimage.2019.11610
Received 29 June 2018; Received in revised form 2
Available online 19 August 2019
1053-8119/© 2019 Published by Elsevier Inc.
A B S T R A C T

Neurofeedback (NF) is a research and clinical technique, characterized by live demonstration of brain activation
to the subject. The technique has become increasingly popular as a tool for the training of brain self-regulation,
fueled by the superiority in spatial resolution and fidelity brought along with real-time analysis of fMRI (func-
tional magnetic resonance imaging) data, compared to the more traditional EEG (electroencephalography)
approach. NF learning is a complex phenomenon and a controversial discussion on its feasibility and mechanisms
has arisen in the literature. Critical aspects of the design of fMRI-NF studies include the localization of neural
targets, cognitive and operant aspects of the training procedure, personalization of training, and the definition of
training success, both through neural effects and (for studies with therapeutic aims) through clinical effects. In
this paper, we argue that a developmental perspective should inform neural target selection particularly for pe-
diatric populations, and different success metrics may allow in-depth analysis of NF learning. The relevance of the
functional neuroanatomy of NF learning for brain target selection is discussed. Furthermore, we address
controversial topics such as the role of strategy instructions, sometimes given to subjects in order to facilitate
learning, and the timing of feedback. Discussion of these topics opens sight on problems that require further
conceptual and empirical work, in order to improve the impact that fMRI-NF could have on basic and applied
research in future.
1. Introduction

The last decade has seen significant increase in the number of
research groups using real-time, functional magnetic resonance imaging-
based neurofeedback (fMRI-NF) to train participants in the self-
regulation of brain networks and functions (Sulzer et al., 2013; Thi-
bault et al., 2018). NF utilizes the latest developments of real-time data
processing and pattern analysis to train participants in the
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self-modulation of neural networks (LaConte et al., 2007; Johnston et al.,
2010; Johnston et al., 2011; LaConte, 2011; Watanabe et al., 2017). The
strength of this technique, compared to other approaches such as EEG
(Arns et al., 2017) or functional near-infrared-spectroscopy (fNIRS)
(Sitaram et al., 2017), lies in its high spatial resolution, the ability to
probe deep subcortical structures and whole-brain coverage, as well as
the extraction of information from distributed activation patterns (Sorger
et al., 2012), and the mapping of functionally connected networks (Zotev
rrey, GU2 7XH, UK.
im, Germany.
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et al., 2011). This is critical, as functional brain networks change
significantly throughout development (Cohen Kadosh et al., 2011) and
the fine-tuning patterns differ for typically and atypically developing
populations (Johnson et al., 2002, Cohen Kadosh, Linden et al. 2013). If
implemented successfully, the NF approach holds much promise for
brain-based intervention approaches that aim to influence and shape the
emerging networks in the developing and matured brain. That is, it al-
lows us to target not only cortical and subcortical task-relevant regions
with good precision, but it also offers the necessary flexibility to
accommodate the frequent changes in brain network configurations that
are typical for emerging networks. As a result, a substantial body of
“neurofeedback training” research is now available that highlights the
potential and versatility of feedback-based approaches to teach partici-
pants to control and improve brain functions.

Operant conditioning is widely acknowledged as the leading learning
mechanism of brain self-regulation with NF (Black et al., 1977; Caria,
2016), which is mediated by reinforcement of action that results in a
desired change in brain activation. The two-process theory (Gaume et al.,
2016; Lacroix, 1986) adds a second, parallel process, which focuses on
discrimination learning of internal percepts, guided by the identification
of correlation between internal (e.g. afferent signals, mental events, af-
fective states) and external signals (i.e. neurofeedback). The integration
of internal percepts with NF relies on the allocation of attention to the
different sources of these signals, which is moderated by executive
function (Gaume et al., 2016). The participant perceives reinforcing
feedback and evaluates it with regards to the regulation goal. If accessible
to perception, the subject improves his or her perceptual accuracy of
internal signals. Depending on the valuation outcome, mental actions
such as cognitive strategies are then changed or maintained (Paret &
Hendler, in press). A detailed overview of NF learning theories can be
found elsewhere (e.g. Arns et al., 2017; Gaume et al., 2016; Sherlin et al.,
2011; Strehl, 2014).

With the advent of fMRI-NF, the number of specific brain mechanisms
and indications for NF training has broadened considerably (Sulzer et al.,
2013). The functional specificity of fMRI might explain the versatility of
fMRI-NF, showingmodulation effects across a number of domains such as
motor function (Sitaram et al., 2012; Scharnowski et al., 2015), prosody
(Rota et al., 2011), working memory (Zhang et al., 2013), visual sensi-
tivity training (Shibata et al., 2011; Scharnowski et al., 2012; Sitaram
et al., 2012), and emotions (Caria et al., 2010; Johnston et al., 2011;
Zotev et al., 2011; Paret et al., 2014; Koush et al., 2017; for a review see
Linhartov�a et al. (2019)).

As a result, the number of studies on fMRI-NF has increased sub-
stantially and methodological progress has been considerable (Thibault
et al., 2018). We now have seen evidence that fMRI-NF training is
feasible in participants across a wide age range, starting with children as
young as seven years (Cohen Kadosh et al., 2016b; Alegria et al., 2017)
and in a broad range of patient populations (see Thibault et al., 2018 for
review), including prevalent psychiatric conditions such as chronic pain
(deCharms, Maeda et al., 2005; Guan et al., 2015), depression (Linden
et al., 2012; Young et al., 2014; Yuan et al., 2014), borderline personality
disorder (Paret et al., 2016a), posttraumatic stress disorder (Gerin et al.,
2016; Nicholson et al., 2017) and addiction (Li et al., 2013; Kirsch et al.,
2016). Evidence has also accumulated that fMRI-NF training affects
responsiveness not only in the specific target region, but that it also
modulates the underlying task networks (e.g., Cohen Kadosh et al.,
2016b Cohen et al., 2016; Keynan et al., 2016; Ruiz et al., 2013). Further,
some studies have now begun to directly modulate brain networks. This
has been achieved via functional connectivity (fc)-NF which has been
used in both adults (Koush et al., 2013, 2017; Spetter et al., 2017), and
adolescents (Zich et al., under review). Finally, more recently, advanced
methods such as multivariate pattern analysis (MVPA) and hierarchy
indices between network’s nodes (Jacob et al., 2018), have been intro-
duced to assess distributed patterns of brain activation and functional
correlations (Lubianiker et al., 2019).

While the technical aspects of fMRI-NF have been brought along to
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great success, which is reflected in advanced software developments and
more scanning centers being now set-up to conduct fMRI-based NF ex-
periments, the field finds itself at a crossroads which will not only
determine whether the current research activity is sustainable in the
future but will also have the impact that is hoped for with regards to
interventions and clinical applications (Stoeckel et al., 2014). As with
many newly emerging fields, it is important to verify that promises do not
overstate the realistic possibilities. While the current evidence is
certainly encouraging regarding the feasibility of fMRI-NF with a number
of disease-relevant target areas and networks, it is now critical to tighten
the strings and develop a methodological framework that can help guide
future research, in particular on clinical applications. Furthermore, this
will considerably facilitate the shift from feasibility and proof-of-concept
studies, which naturally dominate the initial phase of a research field,
towards translational studies and clinical trials. Researchers developing
NF training protocols cannot avoid to address fundamental questions
regarding all steps of planning, conducting and analyzing; starting from
the experimental design and leading all the way down to the evaluation
of training success (Randell et al., 2018). Broadly, critical questions can
be sorted into four domains as they address (1) the neurocognitive
function to be changed with the intervention; (2) the information given
to participants by professionals beforehand and transmitted via the
brain-computer interface; (3) personalizing the training context to the
participant and (4) measuring brain self-regulation and training success.
Addressed in this paper, these domains and the corresponding questions
are visualized in the form of a Floor Map for graphical overview (Fig. 1).
The rapid development of NF techniques and applications, a large variety
of suggested solutions for current problems, and the lack of gold stan-
dards are challenges that, in our view, require a debate considering
several procedural aspects underlying the method. With this paper, we
hope to contribute to the critical discussion of current progress in
fMRI-based NF research and accordingly, to address the considerations
and possible solutions the field is currently facing with. Though we focus
on fMRI, the large part of critical points stressed in this paper are not
limited to NF with fMRI, but pertain to any neuroimaging modality that
can be used for this purpose, including EEG, fNIRS or magnetoenceph-
alography (cf. Thibault et al., 2016; Sitaram et al., 2017). However,
amongst all neuroimaging modalities, as fMRI-based NF is currently the
most rapidly growing field (Watanabe et al., 2017), it also brings up
certain aspects that require particular attention and justify focused re-
view. Critically, by providing an overview on the different methodo-
logical, cognitive and psychological factors that influence NF training
success, we hope to help steer the discussion towards improving and
standardizing procedural aspects.

2. How to choose the training target?

2.1. Target regions

One of the most critical decisions facing fMRI-based NF research is
without a doubt the choice of target and control region(s). Among others
this involves the question whether fMRI-based NF should focus on local
activation in a specific target region (typically a change in average blood
oxygenation level dependent [BOLD] response), or rather metrics related
to a network function or organization. Either approach has been shown to
be feasible, yet a couple of theoretical aspects need to be considered.

If a single target region is chosen to be modulated with NF training, it
is important to consider whether the main goal of the training is to
regulate activation in a region that is disturbed, such as for example
modifying amygdala BOLD activity in an emotion regulation context
(Zotev et al., 2011; Linden et al., 2012; Paret et al., 2014), reducing
ventral striatum reactivity to alcohol cues (Kirsch et al., 2016), or in a
region that is associated with increased food cravings (Ihssen et al.,
2016). The regional approach has governed the fMRI-NF practice, led by
the assumption that some regions might be critical for a specific symptom
or disorder. Yet, the critical issue here is to use a region that is vastly
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Fig. 1. “Floor plan”, illustrating domains of neurofeedback procedures of cur-
rent debate and discussed in this article.
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connected and could be considered as a hub, assuming that its modula-
tion will result in a large functional impact through its network (Table 1).

It has become increasingly accepted among neuroscientists that
functionally inter-connected networks of regions mediate brain processes
(Broyd et al., 2009; Bullmore and Sporns, 2009; Menon, 2011; Barrett
and Satpute, 2013) especially regulatory ones (Kober et al., 2008; Raz
et al., 2012). According to this view, communication between and within
largely segregated neural modules is essential to the transfer and pro-
cessing of information in the brain, and it would make sense to target
parameters of this communication with NF. One possible network metric
that can be probed with NF is functional connectivity (fc) between re-
gions, aiming to differentially change the co-activation patterns between
two or more regions (Watanabe et al., 2017). This approach is possibly
the more physiologically valid given that the brain is naturally organized
Table 1
Overview on combinations of brain target and outcome analysis with single re-
gion and network NF trainings.

Neurofeedback brain target

Single region Network of regions

Outcome Single
region

Training of single region
regulation, assess
activation of same region
as outcome

Regulation training of
network activity with two
or more regions, assess
activation of single region

Network of
regions

Training of single region
regulation, assess
functional network of
trained region as outcome

Regulation training of
network activity with two
or more regions, assess
same functional network
as outcome

3

in networks of regions that work together to support behaviour (Fair
et al., 2007; Broyd et al., 2009; Fair et al., 2009; Cao et al., 2014). It is
however important to recognize that network NF approaches should not
neglect the behaviour of single brain regions within that network. Thus,
for example, it can be assessed whether a specific brain region within the
network is driving the modulatory change, as shown in a study which
used fc-NF to change effective connectivity between the prefrontal cortex
and the amygdala in an emotional reappraisal context (Zich et al., under
review). In this study, Zich and colleagues found that fc-NF modulated
the prefrontal cortex (PFC)-amygdala fc towards a more negative fc
pattern, and that this modulation was driven predominantly by changes
in PFC activity. The authors also found that this fc change, which is
related to more control and less anxiety, correlated with the change in
thought control ability as assessed before and after the MRI session.

2.2. Consider functional neuroanatomy of neurofeedback learning

In a recent paper, Sitaram and colleagues presented three different NF
brain network modules that support the overall NF process (Sitaram
et al., 2017). Focusing on key brain regions that have been repeatedly
shown to be activated in previous NF studies, they differentiated between
network regions associated with control of visual NF, such as the dorso-
lateral PFC (dlPFC), thalamus, lateral occipital cortex and posterior pa-
rietal cortex, NF learning regions such as the dorsal striatum, and finally,
NF reward processing regions, such as the ventral striatum, the anterior
cingulate cortex (ACC) and the anterior insula. Moreover, neural acti-
vations related to NF control and those related to the monitoring of
feedback such as reward signals could be recently differentiated (Paret
et al., 2018). In this study, healthy individuals viewed emotional pictures
and regulated their amygdala response, visualized via the temperature of
a thermometer presented next to the pictures. The task involved two
conditions, requiring individuals to regulate NF either up or down. That
is, they needed to evaluate NF with respect to the task-condition (e.g. rise
in temperature is rewarding during up-regulation but punishing during
down-regulation). In line with Sitaram et al.‘s model, the dlPFC, lateral
occipital cortex, and lateral thalamus were involved in NF control,
whereas the ventral striatum was involved in reward processing. This
finding aligns well with other empirical study of NF-related reward sig-
nals (Ramot et al., 2016; Shibata et al., 2019; Skottnik et al., 2019). In
contrast to Sitaram et al.‘s suggestion, the insula was not involved in
reward processing but rather in NF control (Shibata et al., 2019; Paret
et al., 2018). In addition, the ventromedial PFC (vmPFC) was involved in
feedback monitoring (Radua et al., 2016; Paret et al., 2018; Shibata et al.,
2019), as were the medial thalamus and the rostral PFC (Paret et al.,
2018). Notably, these regions did not differentiate between rewarding or
non-rewarding feedback, whereas the orbitofrontal cortex was found to
respond to failure feedback selectively (Paret et al., 2019). Instead, the
vmPFC and medial thalamus exhibit a more general feedback response,
suggesting a role in attentional control. The vmPFC may also support the
learning of associations between emotional arousal and feedback (Paret
et al., 2016a,b; see also Radua et al., 2016 for vmPFC response to NF). In
contrast, the rostral PFC showed a marked response when subjects were
instructed to up-regulate feedback but not during down-regulation (Paret
et al., 2018). A positive correlation of this response pattern with regu-
lation success, as well as functional connectivity between rostral PFC and
ventral striatum further support a role of rostral PFC in the monitoring of
contextual information such as instructions (Paret et al., 2018). Rostral
PFC resting-state connectivity predicted anxiety reduction with fMRI-NF
(Scheinost et al., 2014), a finding that further emphasizes the importance
of this neural node for the ability to effectively process feedback in order
to inform brain self-regulation. Involvement of rostral PFC may therefore
reflect effortful model-based reinforcement learning of regulation stra-
tegies (Gaume et al., 2016).

Brain self-regulation with NF is an active task and involves inter-
locked psychological processes. In addition to regions involved in feed-
back monitoring, regions involved in active NF control show great
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overlap between studies (Emmert et al., 2016). The network comprises
regions from the cognitive control network including lateral PFC and
posterior parietal cortex (Gaume et al., 2016), the ACC which is assumed
to implement error monitoring of NF (Gaume et al., 2016), insula and
lateral thalamus (Emmert et al., 2016; Paret et al., 2018). As these re-
gions are activated when subjects try to control NF, down-regulation
training with these regions seems incompatible with the psychobiologi-
cal dynamics of the system. In line with this assumption, Veit et al. (2012)
showed that down-regulation of anterior insula activation was associated
with lower activation compared to up-regulation, but insula was still
activated above baseline in both conditions. Instead of down-regulation
below baseline, alternating up- and down-regulation of dlPFC can in-
crease speed of deliberate dlPFC regulation and may lead to more flexible
recruitment of cognitive control (Van den Boom et al., 2018). Feeding
back activation from regions while they are themselves involved in NF
may introduce problems for learning regulation, and should be consid-
ered in study planning (Lubianiker et al., 2019). Taken together, several
neural networks are involved in NF monitoring and control and feeding
back activation from these networks may interfere with the actual
treatment goal.

2.3. Control aspects

In order to show specificity of training, studies introduce control
groups that, instead of feedback from target brain activation, receive
some other kind of intervention or feedback protocol. The most
commonly adopted choice of feedback control is to feedback signal
stemming from a different brain region (other approaches include: no
feedback; feedback based on the activity from the same region, but from
a different point in time; feedback from the same region, but from a
different individual; feedback based on artificially created irrelevant
randomized signals, also sometimes called sham feedback). Here, similar
concerns apply to the choice of a region from which the participant re-
ceives sham feedback in order to assess the sensitivity and specificity of
the NF training. Generally, the control feedback region should be inde-
pendent of the NF network that is to be trained. Given that most cognitive
and behavioral functions depend on intertwined networks, this is a
challenge that has yet to be addressed satisfactorily (Cohen Kadosh,
Linden et al., 2013; Staunton and Cohen Kadosh, 2019; Cohen Kadosh
et al., 2016b). Recently published taxonomies (Sorger et al., 2019,
Lubianiker et al., 2019) survey the advantages and disadvantages of the
different ways of designing control conditions and selecting control
groups. For example, not involving a control group or comparison to a
no-training control group allow slim and less costly study designs, and
are favorable in early phase studies (e.g. to identify endpoints for future
clinical trials (Sorger et al., 2019)). If NF is given in order to facilitate
mental strategy learning, a control group practicing a mental strategy
without NF is necessary to reveal additive effects from treatment (Sorger
et al., 2019). In contrast, placebo control is required to conclude on
causality of brain self-regulation (e.g. with a randomized control group
design). Like placebos in pharmacology research, NF placebo conditions
should control for psychosocial effects (e.g. attention by staff, receiving
high-tech treatment, and so on) without altering the process targeted
with the intervention (e.g. emotion regulation with amygdala neuro-
feedback). However, brain self-regulation with NF is a complex phe-
nomenon and involves several processes itself such as perception,
valuation of feedback, implementation of control and learning (see sec-
tion 1.2 above). Therefore, placebo would need to invoke all these “NF
general” processes, without addressing the target process (Lubianiker
et al., 2019). With current state of knowledge, an informed selection for
placebo NF considering all the above points is difficult, if not impossible.
A solution still to be tested may be “randomized ROI NF” (suggested in
Lubianiker et al., 2019), where different control regions-of-interest are
assigned to participants of the control group. Moreover, ethical consid-
erations may prevent usage of some control groups, particularly in pa-
tient treatment. For example, there is concern that sham feedback might
4

encourage participants to abandon an otherwise successful strategy,
simply because the feedback does not seem to support using it. Schabus
(2017) suggested that yoked feedback might introduce learned help-
lessness, with adverse consequences on motivation and learning with
subsequent real feedback. Moreover, a recent study by Goldway et al.
(2019) provided additional support for the suitability of sham feedback
to distill specific NF effects, after they observed subjective improvement
after sham feedback in patients with chronic pain that faded in follow-up
measurements.

Similarly, given the changes in recruitment patterns of different brain
regions in the developing brain, it is likely that brain regions that are
used at an earlier developmental stage are not necessarily relevant at a
later stage (Johnson et al., 2009; Johnson et al., 2015). As a result of this,
it would be extremely difficult to find a control brain region that would
support a comparable function across different ages. A possible solution
for this problem could be to provide authentic feedback during the
regulation conditions and to compare the regulation success against a
‘dry’ regulation baseline (where feedback is not given). This would allow
us to assess the extent to which participants rely on the live feedback
signal to both learn and maintain their regulation strategies.

2.4. Population aspects

The selection of region(s), as well as other parameters, is of particular
importance when training children with or without psychopathology
(Cohen Kadosh, Linden et al., 2013; Cohen Kadosh et al., 2016a),
although it does apply also to adults. For example, it is currently unclear
whether one should teach young individuals to regulate brain responses
that would support a cognitive function at the specific developmental
stage, or, instead teach them directly to use the brain network that
supports this ability in healthy mature adults (Fig. 2). This may seem
especially important if one considers the developing brain as an adaptive
system, where the networks of brain regions that support cognitive
abilities change interactively as a result of on-going brain maturation and
cognitive development (Cohen Kadosh and Johnson, 2007; Johnson
et al., 2009). Hence, the temporary use of an alternative brain network
during development can be considered both logical and adaptive and it
remains to be determined whether NF should target these current alter-
natives instead of future key regions. This is also relevant for other
clinical populations (e.g. stroke patients), where brain networksmay well
have specialized in a way that is most adaptive for the individual. This
has not only theoretical and practical, but also ethical, implications. More
precisely, the main choice lies between increasing responsiveness in
compensatory networks, or in attempting to shape brain networks to-
wards more typical functioning. While either approach could be argued
for, a definite decision should be best based on scientific evidence of
mechanisms of plasticity and rehabilitation that is currently lacking. One
promising solution may be to focus on brain regions that help with
acquiring new skills, such as the inferior frontal gyrus for example, whose
involvement in executive functions makes it a frequently reported brain
region in developmental neuroimaging studies that observe
age-dependent differences in brain activation (Johnson et al., 2009;
Cohen Kadosh, Johnson et al., 2013).

3. How to guide the trainee?

3.1. Feedback interface

Interfaces of different complexity have been applied, ranging from
simple, thermometer-like displays (Cohen Kadosh et al., 2016b) to more
complex reality interfaces (Yamin et al., 2017). Integrating realistic vir-
tual environments in NF can enhance learning and improve user’s
experience (Cohen et al., 2016), for discussion see (Lubianiker et al.,
2019). Yet, complexity can also prove to be distractive as it introduces
additional attentional task demands, especially in pediatric or clinical
populations which may present with reduced cognitive functions



Fig. 2. How to treat the maturing brain: train net-
works specific for a particular developmental stage
or reinforce adult healthy brain function? Brain
networks undergo considerable maturation
throughout the first two decades of life (Fair et al.,
2009; Cohen Kadosh, Cohen Kadosh et al., 2011), a
change which is reflected in the functional and
structural connectivity patterns across the age
range. For the design of effective NF protocols, this
could mean that different brain regions may sup-
port a specific cognitive function at each age point.
The question therefore arises whether one should
teach young individuals to regulate brain responses
that would support a cognitive function at the spe-
cific developmental stage, or, instead teach them
directly to use the brain network that supports this
ability in healthy mature adults. This may seem
especially important if one considers the developing
brain as an adaptive system, where the networks of
brain regions that support cognitive abilities change
interactively as a result of on-going brain matura-
tion and cognitive development (Cohen Kadosh and
Johnson, 2007; Johnson et al., 2009). The same
principle applies for clinical populations, which
may rely on alternative brain networks to perform a
task. Hence, the (temporary) use of an alternative
brain network can be considered both logical and
adaptive and it remains to be determined whether
NF should target these (current) alternatives instead
of typical key regions (see also discussion in
Lubianiker et al., 2019).

Table 2
Pros and cons of simple and more complex NF interfaces.

Simple interface Virtual reality environment

Examples Thermometer, sound/music
jingle, rocket space ship,
virtual fire

Interact with avatar, reach a coffee
mug, navigate in computer game

Pros Distractors are reduced to
minimum

Improved learning
Better sustainability
Better transferability
Increased motivation

Cons May produce fatigue May distract from task
More complex scenarios come with
higher cognitive demands and may
turn out difficult for some populations
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(‘entertainment’ vs. ‘treatment’ problem, see (Arns et al., 2014)). The
optimal feedback modality (e.g., visual, auditory, tactile) and the
complexity of their transmission (one dimensional courser movement to
virtual reality environment) have to be chosen based on the objective,
population and task (Table 2).
3.2. Instruction

Previous NF studies have varied as to whether participants were given
explicit strategy instructions to regulate their brain responses or whether
an implicit strategy was expected, i.e., with participants being asked to
develop their own effective strategies. Most fMRI-NF studies to date have
opted for implicit strategies (e.g. Paret et al., 2014), and only some pa-
tient studies suggested the use of mental imagery (e.g. Zilverstand et al.,
2015). Others have only offered simple and relatively unconstrained
instructions, in order to allow participants across a wide age range (7–17
years) to perform well. This was the case in a recent NF study where
children and adolescents were asked to increase the response in a key
emotion regulation region by trying ‘to think happy thoughts; to think
about something that would make them happy’ (Cohen Kadosh et al.,
2016a,b). Keeping instructions simple may also be important for patient
5

populations, when ability levels to use different strategies are likely to
vary significantly. The same study also found that whereas the instruc-
tion worked in the first instance, this lasted only for a couple of runs, with
some participants failing to up-regulate in the later runs. Understanding
the motivational-contextual factors that modulate NF regulation is crit-
ical. Identifying individual differences in the use of different regulation
strategies is also important, if we want to enhance the effectiveness of
these procedures. In fact, a collection of post-training feedback from
subjects across experiments may be helpful with identifying any trends in
strategy formation/usage.

NF can also be used to support the selection of an instrumental mental
strategy from a pool of potentially useful strategies (Lawrence et al.,
2014). Patients can identify effective strategies for ACC control from a
pool of skills they had previously learned during cognitive behaviour
therapy treatment (MacDuffie et al., 2018). Mental strategies during
training are diverse and depend on the NF signal; for example, motor
imagery can be used to control sensorimotor electrocortical rhythms
(Halder et al., 2011; Nan et al., 2012) and cognitive appraisals of
emotional contents are instrumental for amygdala regulation (Brühl
et al., 2014; Zotev et al., 2011). It was shown that strategy knowledge can
facilitate NF learning (Bray et al., 2007; Lawrence et al., 2014; Zilver-
stand et al., 2015; Kober et al., 2017), and strategy instructions may
decrease the risk of non-learning with limited duration of an experiment
(Scharnowski andWeiskopf, 2015) or in face of erroneous control beliefs,
as shown in EEG-NF (Witte et al., 2013). Furthermore, practicing anterior
insula up-regulation with NF helped subjects to identify helpful mental
strategies, while subjects repeating strategies without NF did not learn
anterior insula regulation (Caria et al., 2010).

On the downside, strategies can have undesired effects. For example,
when subjects identify an instrumental strategy right away, there is no
need to explore new strategies, which would potentially lead to even
stronger activation. Some support for this critique of strategy suggestions
comes from EEG-NF research, where Hardman et al. (1997) observed a
steeper learning curve in subjects without instructed strategies to control
feedback from slow cortical potentials, compared to another group of
subjects who were told to use emotional strategies. However, significant
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post-hoc tests were not reported to show whether the no-strategies group
in the last of three blocks outperformed subjects from the
instructed-strategies group. In line with a possible advantage not to
instruct strategies, strongest learning effects were observed for
fMRI-based NFwithout strategy instruction, followed by NFwith strategy
instruction; but group differences were not significant (Sepulveda et al.,
2016). These results need a careful interpretation, because the authors of
the latter study introduced another variable (additional rewards) and
statistical tests of group differences may have lacked adequate power.
Though these studies lend some support to the notion that strategy in-
structions may (negatively) influence NF regulation learning, these re-
sults may also indicate that subjects were able to overcome initial
ignorance of strategies to regulate NF, while subjects who received
strategy instructions start with a higher level of regulation success, which
they maintain over the course of the experiment.

Evidence has now accumulated showing that explicit strategy
knowledge is not required for acquisition of NF control per se (Shibata,
Watanabe et al. 2011, 2016; Kober et al., 2013; Amano et al., 2016;
Koizumi et al., 2016; Ramot et al., 2016) for a review see Shibata et al.,
(2019). Nonetheless, instructed strategies may be useful when using NF
for certain applications, e.g. emotion regulation purposes. For instance,
individuals who habitually use specific emotion regulation strategies,
such as the reappraisal of emotional material, have better functioning
levels and higher well-being compared to others, who tend to suppress
emotions (Gross and John, 2003). Reappraisal is a cognitive strategy to
change the emotional impact of an affective stimulus via
re-interpretation of, or taking a detached perspective from the stimulus
(Powers and LaBar, 2019). Healthy individuals prefer to distance from
emotional stimuli with high affective intensity, but rather reappraise low
intensity stimuli (Sheppes, Scheibe et al. 2011, 2014). Deviations from
this pattern may relate to psychopathology, such as borderline person-
ality disorder (Sauer et al., 2016). Hence, NF with explicit strategy in-
structions may help patients to overcome deficits in the use of effective
emotion regulation strategies, through neural reinforcement of desirable
mental strategies (Herwig et al., 2019). The question of whether explicit
or implicit task instructions are most efficient remains to be determined,
yet given the importance of this methodological aspect (Birbaumer et al.,
2008), the need for a more systematic research and possible standardi-
zation is evident.

4. How to personalize the training?

Based on the questions above, it has also become clear that meth-
odological approaches may need to be additionally adapted for different
populations, as requirements are likely to vary not only across different
ages or clinical populations, but also with regard to subject-specific
psychological variables which we will discuss in the next section.
There are a number of cognitive and psychological factors that can affect
NF performance. Gaining a better understanding of these factors is not
only important in order to improve training outcome but also to help
address the inefficiency problem. The inefficiency problem refers to the
often reported finding that not all participants in NF studies are able to
influence their brain activity. These people are often referred to in the
literature as non-responders, non-performers or non-regulators and
represent 30–50% of the population (Alkoby et al., 2018). In the
following, we discuss a number of methodological, cognitive and psy-
chological factors that all contribute to NF efficiency. While by no means
complete, these provide first starting points for further optimizing NF
interventions for a specific sample and thereby reducing the inefficiency
problem.

4.1. Protocol aspects

An area of NF research that requires more in-depth research is the
development of both time and cost-effective training regimes. For
example, the number and length of each training session varies
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considerably across the different studies, with some studies testing par-
ticipants repeatedly over several days (e.g. Spetter et al., 2017) whereas
others used a single testing session only (e.g., Cohen Kadosh et al.,
2016b). Some individuals might achieve the maximum level of control
already after a single session, notably not only in fMRI-NF but also in
EEG-NF (Schabus, 2017; Schabus et al., 2017; MacDuffie et al., 2018).
The former is surprising as EEG-NF is usually thought to require higher
training dosage than fMRI-NF (Sulzer et al., 2013). The lack of reported
data on within-session brain signal regulation is currently a major
obstacle for comprehensive review (Thibault and Raz, 2016). A more
systematic investigation of optimal training length is urgently needed to
avoid training regimes that are too short, or too long to be effective. To
date, only one study has considered individual criteria for training length
(Scharnowski et al., 2012). More research, across a range of populations
and tasks would now be needed to provide reliable standards for effective
and efficient NF training. Similarly, when considering training length and
intensity, the option of combining NF training with out-of-scanner
practice should be considered, as has been done in some studies with
clinical samples (Subramanian et al., 2011; Linden et al., 2012), possibly
in combination with a therapeutic intervention, such as
cognitive-behavioral therapy (CBT), which would allow for a cross-over
and mutual reinforcement of intervention approaches. NF could augment
psychotherapy as illustrated by MacDuffie et al. (2018), who let patients
regulate ACC after completion of CBT, using strategies they had learned
in psychotherapy. The one-session protocol was instrumental for patients
to identify strategies that were more effective than others for neural
regulation. Furthermore, Herwig et al. (2019) show that NF may
augment the neural effect of behavioral instructions.

Finally, a number of contextual and individual factors such as at what
time of the day participants are tested, age, the amount of sleep that the
participant had, physical exercise and general fitness, nutrition and
menstrual cycle could influence the optimal training regime. At this time,
we have no data available to address these questions conclusively. In
addition to finding an ideal NF protocol, it might be helpful to try and
implement an adaptive NF protocol that could maximizes neural regu-
lation abilities. One example of such an approach to support optimal
regulation performance could involve the individual NF range to keep
participants challenged and engaged by varying scales of neural activity
representation via the interface. Adaptive task difficulty was previously
applied in other types of tasks, such as the tracking stop task (Rubia et al.,
2003) by using a computer algorithm that adjusts the paradigm difficulty
level according to the participant’s performance. Using this approach,
feedback range would not be fixed for all participants, rather it will be set
according to the participant’s performance in previous blocks/sessions.
Such “shaping” of behaviour conforms to learning theory principles
(Sherlin et al., 2011). For example, if the participant was very successful
in previous sessions, the feedback will be presented with a higher de-
mand range of neural activity in order to achieve the optimal
performance.

Another approach to maximize regulation performance is the use of
adaptive NF protocols that contain fewer challenge levels. According to
this approach, individual progress in NF training is determined by the
participant achieving a pre-determined goal, rather than by going
through a fixed number of sessions. This kind of protocol may include
fewer stages, each carrying different level of challenge. The first stage of
such NF protocol may include a neutral feedback interface (e.g. bar/
neutral sound) while more advanced stages may include gradually more
challenging (i.e., stressful or intriguing) feedback interfaces. In this setup
participants are required to meet pre-determined success criteria (e.g.
three successful sessions), in order to progress from one stage to the next
(see Table 3 for an overview). Whilst adopting an individually tailored
feedback approach may be more optimal from a learning perspective, it
significantly limits comparability between sessions (either within or
between individuals), and in turn reduces the informative value of,
especially, between-subject designs.



Table 3
Selective summary of protocol aspects that may increase efficiency of NF training.

Measure Current state-of-the-art Suggestions

Limit training to number of sessions that are needed for
learning.

Empirical data on optimal number of session is lacking.
Studies are designed based on similar studies already
published and expert suggestions from the literature.

Future studies should report between-session success
and/or learning curve. Studies are needed to identify
learning curves and define threshold-criteria.

Improve learning with additional out-of-scanner treatment Initial studies show feasibility and benefits in clinical
samples.

Conduct more studies to test benefits and feasibility of
out-of-scanner practice. Identify maximum number of
NF sessions needed in such protocols.

Adapt feedback range to the subject’s performance Some studies use an adaptive range and find successful
learning. Studies to assess benefits of adaptive versus
fixed feedback range and baseline levels are missing.

Investigate effect of adaptive feedback on brain self-
regulation and assess potential additive benefits for
transfer of learning.

Introduce performance-level criterion (e.g. A: regulation
without challenge; B: regulation with mild stressor; C:
regulation with strong stressor). Use performance-levels for
decisions such as passing to next level of difficulty, or to stop
training.

Not yet tested. Studies should assess potential improvements when
using training with levels.
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4.2. Person aspects

Cognitive factors such as general intelligence levels, executive func-
tions and the ability to focus on a task are to be considered when
adjusting task designs for different populations (Hammer et al., 2012;
Jeunet, N’Kaoua et al., 2016). It may be useful for example to simplify
both task instructions and feedback display for younger participants in
order to reduce the task demands and cognitive load (Gaume et al.,
2016). A study by Alegria et al. used a simple rocket to display brain
activity in a sample of adolescents (Alegria et al., 2017). In another recent
study, Zich and colleagues trained a sample of adolescent girls to
simultaneously increase activation in the dorsolateral prefrontal cortex
and to decrease activation in the amygdala (Zich et al., under review), yet
to simplify these complex changes for the participants, a simple ther-
mometer was displayed, which increased with increasing negative cor-
relation between the two regions.

A recent systematic review of the NF literature where 281 articles
were reviewed (Staunton and Cohen Kadosh, 2019) found that attention
indices such as the ability to focus, as well as length of attention span
influenced NF learning outcomes, yet more research needs to be con-
ducted to explore this further.

The contribution of psychological factors has been less explored and
the results so far are not conclusive. In the recent systematic review
mentioned above, only two factors emerged: motivation and mood
(Staunton and Cohen Kadosh, 2019). Understanding a participant’s
motivational preference is important because it can help explain how
participants will respond to the training paradigm. However, motivation
is likely to vary between and within participants, but also as a function of
age and across contexts. Specifically, it was found that while motivation
to learn is important, there may be a need to balance individual levels of
intrinsic motivation with the reward that is received. For example, Leeb
and colleagues (2007) found that whereas highly motivated participants
performed initially better on a simple NF training task than less moti-
vated students, this performance difference was reversed when the NF
training paradigm was switched to a virtual environment and became
more immersive and hence, more interesting for subjects. This suggests
that external factors such as learning paradigms can interact with an
individual’s motivation to learn.

With regard to mood, it has been shown that anxiety and depression
can have a negative influence on performance (Zich et al., under review).
In a recent study, Zich and colleagues found that low state anxiety levels
in adolescent girls at the beginning of the training predicted better NF
training outcomes (Zich et al., under review). While more research is
needed to replicate this finding, future studies could explore the use of
anxiety reducing exercises prior to the NF training in order to maximize
its effectiveness. Similarly, it may be useful to monitor anxiety levels in
participants throughout the training and to adjust when a certain
threshold is reached, rather than continuing with the training.

Further, being susceptible to other people’s emotion appears to play a
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part in emotional regulation learning. For example, susceptibility to
anger has been found to impair NF success in two studies (Zotev et al.,
2011; Marxen et al., 2016). Moreover, under specific circumstances, the
ability to label emotions may be important in NF-based emotion regu-
lation learning, such as in the case of children and adolescents who
exhibit prolonged developmental trajectories for both emotion recogni-
tion and regulation abilities (Thomas et al., 2007; Ahmed et al., 2015).
Introspective ability to perceive one’s emotions more generally relates to
the ability to discriminate percepts of internal signals, which is a key
aspect of the two-process theory of NF learning. As suggested by Gaume
et al. (2016), the ability of participants to perceive internal signals may
be a good predictor for learning success and transfer of learning. How-
ever, behavioral measures of the ability to perceive brain states are still to
be developed.

The evidence reviewed above highlights the important role that
psychological factors can play in the successful implementation of NF
training (see also Staunton and Cohen Kadosh, 2019). In the same vein,
neural markers were found successful to predict EEG-NF performance
(Gevensleben et al., 2009; Blankertz et al., 2010) and could be distilled
from pretraining fMRI measures such as resting-state connectivity
(Scheinost et al., 2014) to predict NF response and optimize treatment
protocols. Clearly, more research is needed to develop recommendation
that would allow us to personalize training programs for each individual
in order to achieve maximum effectiveness.

5. How to monitor training?

5.1. Signal calculation

There is currently no standardized approach of calculating feedback,
a problem which makes it difficult to compare NF signal and, in turn, NF
training effectiveness across studies. To quantify signal change, BOLD
signal drifts require corrections such as signal detrending and/or usage of
a baseline where signal drifts only have negligible influence. For
example, baseline activation can be retrieved from an epoch preceding
the regulation block such as a ‘rest’-period of a few seconds where sub-
jects are instructed to refrain from cognitive efforts (Veit et al., 2012),
and activation can be quantified relative to the mean baseline activation.
BOLD signal changes have considerable interpersonal and intrapersonal
variance that renders quantification problematic, though. To deal with
this problem, the BOLD signal can be sampled during a baseline period
(e.g. 60 s) to receive the mean and standard deviation, which can then be
used as reference for quantification of signal variability (e.g. Keynan
et al., 2016). This method seems optimal to receive maximally infor-
mative feedback in terms of variability, but a sufficiently long baseline
period needs to be recorded in order to receive reliable statistics.
Notwithstanding the problems of BOLD quantification, absolute quanti-
fication of BOLD signal change for feedback appears feasible (e.g. Paret
et al., 2014; Zotev et al., 2011), at least for some applications (Fig. 3).



Fig. 3. Feedback is calculated based on the subject’s BOLD signal variance or based on absolute signal change. A) The BOLD signal is sampled during a period (e.g.
during ‘rest’, left area in blue). Mean and standard deviation (sd) is calculated and used to standardize feedback during the ‘regulate’ trial (right area in green). B) An
absolute threshold is set to decide, whether BOLD signal change is followed by a change in the feedback thermometer.

Fig. 4. Different real-time signal processing pipelines yield
feedback that is correlated with different regional activation
patterns. For illustration, right amygdala activation was
calculated with two different real-time preprocessing rou-
tines, based on prerecorded fMRI data of N¼ 17 subjects who
were administered a fMRI emotion regulation experiment
(Linhartov�a, Gerchen & Paret, unpublished data). The
resulting amygdala-signal was used as a predictor in a whole-
brain statistical parametric mapping analysis. The maps show
results from the group t-test (P< 0.05 FWE-corrected; colour-
scale: t-values). Shown are regions that were significantly
correlated with the amygdala signal as it was received by
real-time analyses. Hence, activation of these brain regions is
represented in this signal, and would have been reflected in
feedback from this signal (note that subjects in this study did
not receive feedback). A) The amygdala signal was cleaned
by real-time regression of movement parameters and
“censoring” of super-threshold movements, based on
realignment regressors. B) Activation from a rectangular
control region was subtracted from the amygdala signal (see
Paret et al., 2018 for comprehensive description of methods).
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Another question regards the specificity of BOLD signal changes.
First, the BOLD signal is prone to changes in blood oxygenation that are
not related to neural activations, for example produced by changes in
respiratory patterns, which need adequate control (see Thibault et al.,
2018 for a comprehensive review). Second, although most NF studies use
some sort of artifact correction to control for noise, few studies tried to
confirm specificity of feedback. It is usual practice to carefully select the
anatomical location of a region of interest via a functional localizer
experiment and/or anatomical masks. However, the fMRI signal of the
whole brain is considerably inter-correlated and only few studies analyze
correlations of the feedback signal with brain-wide activations post-hoc.
For instance, Ramot et al. (2016) state that feedback-correlated brain
activation was indeed not confined to the target region in the fusiform
8

face area, but was instead widespread and included regions such as
thalamus, cerebellum and posterior cingulate cortex. In a recent study,
we recorded background noise from a rectangular control region located
few millimeters from the amygdala, and subtracted the signal from the
right amygdala’s BOLD signal. A post-hoc whole-brain regression anal-
ysis with feedback as predictor showed strongest correlation of the target
region, while left amygdala and two regions in the right and left cere-
bellum were also correlated (Paret et al., 2018). In conclusion, though
feedback is given from a region of interest, the feedback signal is likely
not restricted to the anatomical boundaries drawn by the experimenter.
Instead, feedback more or less carries information on activation from
other regions throughout the brain, beyond the a priori selected target
region. In cases of increasing co-activation, feedback becomes more
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representative for neural network activity. Conceptually, the difference
between regional and connectivity feedback is blurred under these cir-
cumstances (Fig. 4). Notwithstanding efforts to yield anatomically pre-
cise signal, it is even not clear whether an NF signal with high anatomic
specificity (e.g. from the right amygdala only) is superior to a less
localized signal. It is even possible that the latter is more helpful for
regulation learning, as a less anatomically restricted signal may be more
representative of functional networks of interconnected brain regions,
and provide greater ecological validity. In future, studies could clarify
this matter by providing whole-brain maps of feedback-correlated brain
activation in addition to regulation success indices, and with verbal
feedback from subjects about the perceived regulation success.

Feedback can be presented continuously or with a delay, and both
approaches have been shown to be feasible in allowing participants to
learn and to modify their brain response. For some feedback modalities
such as dynamic causal modeling (Koush et al., 2017), continuous
feedback is not feasible and intermittent/end-of-block feedback turned
out to be sufficient for NF training. Only few studies compared contin-
uous and intermittent feedback, and evaluated effects on neuro-
modulation. Results are inconsistent: two groups stated that continuous
feedback was superior for premotor cortex regulation (Johnson et al.,
2012) and amygdala regulation (Hellrung et al., 2018), while others
tentatively suggest better auditory cortex regulation with continuous
feedback (Emmert et al., 2017). In fact, two of the studies did not find
significant differences between both types of feedback in primary data
analyses (Emmert et al., 2017; Hellrung et al., 2018), and the other study
did not report the required statistical group comparison (Johnson et al.,
2012). Thus, no clear evidence is currently available on the superiority of
continuous or intermittent feedback. Better knowledge of the functional
neuroanatomy underlying brain self-regulation could inform decision of
continuous vs. intermittent. For example, if the target region shows an
event-related response to feedback, it is probably better to give feedback
intermittently, because otherwise, NF monitoring may interfere with NF
control (Lubianiker et al., 2019).
5.2. Success metrics

The ultimate question for brain self-regulation training is whether the
training was successful or not. However, there is currently no established
practice of how success is measured. A number of approaches have been
taken so far. Some studies have looked at the number of successful trials
Fig. 5. Illustrates different approaches to calculate success metrics. An experiment o
subsequent ‘reg’ trial form together a block-unit. The signal of each trial is congregate
result in a mean value (e.g. x1,n is the mean of all ‘rest’-samples in session 1, block
threshold’ index, the mean of all samples in ‘rest’ (x1,n) and ‘reg’ (y1,n) is calculated a
‘success rate’, ‘reg’ and ‘rest’ conditions are compared in a block-wise manner. On
differed significantly from the preceding ‘rest’ trial. The success rate of a session is re
of ‘personal effect size’, we take the difference (delta) between the ‘reg’ and ‘rest’ m
each delta by the pooled standard deviation σ of this block, and receive block-wise e
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(Chiew et al., 2012; Koush et al., 2013) an effect size of up/down regu-
lation (Cohen et al., 2016) or a combined index which compared regu-
lation vs. rest activity in the target regions (Cohen Kadosh et al., 2016b;
Zotev et al., 2011). Further considerations are whether success is
measured by changes in the NF training sessions only or at a follow-up
testing appointment. Alternatively, success can be operationalized as
improvements in related tasks, i.e. behavioral transfer effects. One could
also look at subsequent functional changes in the brain, such as changes
in local or global connectivity (Shibata et al., 2011; Zotev et al., 2013;
Cohen Kadosh et al., 2016b). Similarly, training effects could be observed
at the structural brain level, i.e. in change in white or grey matter.

Assessing NF training success will also depend on the statistical
approach. The optimal approach will depend on whether the training
consists of a single session or multiple sessions. For a single session, a
simple t-test or Wilcoxon t-test (“fixed threshold”) can be used to
compare activation during a passive baseline condition (e.g. where
subjects were instructed to ‘rest’) and regulation conditions (Fig. 5A), or
between NF-based regulation during exposure to visual stimuli and a
“mirror run” (passive viewing of the same/matched stimuli) (Ihssen
et al., 2016). However, whereas this measure is straightforward, it is also
quite insensitive as it provides binary yes/no answers regarding the
question if the NF session was successful or not (Krause et al., 2017).
Moreover, global changes in brain signals during training (see above)
might mask the true difference between ‘rest’ and ‘regulate’ conditions.
To overcome this issue, one can perform the same statistical test but with
one difference: instead of comparing average brain activity during ‘rest’
to average brain activity during ‘regulate’, compare each regulation
condition to the previous rest condition. In this case, instead of having a
binary score for the session, one can constitute a more fine-grained type
of measure we call “success rate” (Fig. 5B). However, this measure is not
continuous, as it depends on the number of NF blocks in each session,
thus provides fixed levels of success that preclude parametric testing. To
overcome the lack of continuity, one could simply calculate the differ-
ence (delta) between the mean activity levels in the rest and regulate
conditions. In addition to adding continuity, this measure allows for a
straightforward interpretation of the results. There are several drawbacks
however, as this measure is highly noise sensitive and affected by out-
liers. Furthermore, it overlooks differences in within-session variance of
the signal. For example, while two participants may have equal delta they
could differ in the signal variance. Thus, the same delta might not reflect
equal performance. One possible solution is the use of a “personal effect
f alternating ‘rest’ (blue) and ‘regulate’ (reg; green) trials is shown. A ‘rest’ and
d for ‘rest’ (i.e., samples 1, 2, …, i; x1-i) and ‘reg’ (i.e., samples 1, 2, …, i; y1-i) to
n; y1,n is the mean of all ‘reg’-samples in session 1, block n). A) For the ‘fixed
nd passed to a statistical test. If significant, regulation was successful. B) For the
e receives a statistic for each block showing whether samples in the ‘reg’ trial
flected by the percentage of blocks with significant difference. C) For calculation
ean of each block. To account for differences in signal-variance, one may divide
ffect size estimates. The mean of these is the personal effect size of the session.



Table 4
NF training success indices.

Index Type Pros Cons

Single session

Fixed Threshold;
T-test comparing between average ‘rest’ and ‘regulate’

Provides definitive yes/no answer Does not reflect higher/lower levels of success
Threshold is often arbitrary; might cause mislabeling in ambiguous
situations
Cannot be used to test correlations with outcome measures

Success rate;
Based on comparison of ‘regulate’ to the previous ‘rest’ condition

using a t-test. The final result is the sum/ratio of significant
‘regulate’-‘rest’ blocks.

Assesses the consistency of regulation
Less arbitrary, avoids mislabeling in
ambiguous situations

Ordinal: cannot be used for parametric tests

Personal effect size;
Based on difference between means of regulate and rest

conditions, divided by pooled standard deviation. The result is
the mean of these effect sizes.

Continuous
Noise “insensitive”

Instable;
Sensitive to block duration and sampling rate

Multiple sessions
Mean Performance;
The average score of the selected success index across all sessions

“global score” of brain regulation ability
Contains information regarding all the
sessions

Insensitive to temporal dynamics

Last–first session;
The delta between the first and last session

Quantifies over all learning progress Assumes that the last session is necessarily the best one.
Ignores additional information from the rest of the sessions

Learning Slope;
Linear regression/repeated measures ANOVA with number of

session as independent/within-subject factor

Accounts for temporal dynamics
Contains information regarding all the
sessions

Assumes linear improvement in NF performance, that is not
supported by all models of neurofeedback learning (see Sitaram et al.,
2017)

Best Performance;
The best session/block throughout the NF training

Reflects maximum individual potential Noise sensitive
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size” that divides the “delta” by the pooled standard deviation of ‘rest’
and ‘regulate’ conditions (Fig. 5C). This measure is continuous and ac-
counts for differences in individual variance. However, this measure is
quite sensitive to the block duration and sampling rate – with greater
sampling rate leading to a reduction in variance, thereby making it
difficult to compare different designs and interfaces (for a summary see
Table 4).

In order to account for global performance throughout the NF training
course, there is a need to create an index that would capture NF per-
formance not only during a single session but across the entire training
procedure. There are currently few approaches to address this issue: the
first option is to calculate the “mean performance”, i.e. an averaged
success index across sessions. This index assesses the participant’s per-
formance in a global manner throughout the NF training and is relatively
noise-insensitive. One problem with this approach is that the mean
performance index does not take into account whether the participant’s
performance improves from one session to the next. In order to account
for any change in regulation ability, one can use the difference between
the first and last session. However, this would only provide an index of
change from the first to the last session, which would mask any change
throughout the training day, a problem which is more obvious when we
consider that some participants will exhibit their best performance dur-
ing the intermediate sessions of the training, followed by a decrease due
to tiredness or boredom (Cohen Kadosh et al., 2016b). One way to access
this additional information is to calculate the “learning slope”, i.e. the
slope of a regression of success index on session number. While this
measure may account in the best way for learning dynamics, it suffers
from two major drawbacks: first, it assumes that learning follows a linear
trajectory, which is an assumption that is not supported in current
learning theories. For example, skill learning theory for NF learning
predicts rapid initial change in performance and more moderate
improvement at later phases (Yin et al., 2009; Sitaram et al., 2017).
Secondly, this measure is noise sensitive, meaning that one failed NF
session can affect the overall model fit. An additional measure that has
different conceptual framing is “best performance”. This measure refers
only to the best session in the NF training course and might even refer to
the best block. The rationale underlying this measure is that it reflects the
subjects’ best potential of neural regulation. With that, this measure is
highly sensitive to noise but prone to outliers (see Table 4). Altogether, it
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seems that selecting success indices based on theoretical considerations
constitutes a helpful initial starting point. We now urgently require sys-
tematic research into the mechanisms that relate to changes in NF
learning indices and neural/behavioral outcome measures.

6. Conclusion

Researchers about to design and conduct an NF experiment need to
find answers on a variety of questions for which clear guidelines are
missing. In the above, we addressed several questions regarding NF
procedures and reviewed the current state of the literature. For the se-
lection of brain targets, one should consider aspects such as develop-
mental trajectories in brain development and the functional
neuroanatomy of NF learning. Virtual reality interfaces have the poten-
tial to increase training efficiency by keeping subjects motivated, yet the
specific advantages over more simple interfaces that currently prevail
require further study. Whether or not to provide overt strategies for NF
regulation is still a controversial question and evidence for clear rec-
ommendations is lacking. There are virtually infinite ways to calculate
NF signals. Control for nuisance and global brain signals is necessary for
reliable NF, but the way in which the brain signal is “cleaned” from other
influences can have unintended effects. Calculating both the absolute and
relative quantification of BOLD signal change for fMRI-NF is feasible and
suitable for training. Moreover, criteria for quantification of neural
regulation success are lacking, as are success measures, which are
necessary in order to evaluate training efficiency. Here we discuss
different success metrics that may help to evaluate and compare training
regimes in future. We also addressed options to personalize training re-
gimes and to make training more effective, considering aspects of NF
protocols as well as characteristics of persons undergoing training.
Therefore, in order to maintain the current momentum in the field and
the considerable progress as evident by the ever-increasing number of
studies that are being published on NF research, a two-pronged approach
will be needed. Specifically, we envision an active basic science approach
which systematically strives to explore and optimize NF designs by
investigating the effect of methodological, cognitive and psychological
factors. Such an approach could also focus on establishing a compre-
hensive testing protocol that would enable us to compare NF training
outcomes across populations and research centers. One crucial step



C. Paret et al. NeuroImage 202 (2019) 116107
towards this goal is adherence to reporting guidelines such as the CRED-
nf (Ros et al. 2019) in future publications. This first approach would then
inform the translational work in the field by providing authoritative
guidelines for the design of more effective brain training for cognitive
enhancement more generally, and the treatment of clinical populations
more specifically.
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